NADPH Oxidase Isoforms Are Involved in Glucocorticoid-Induced Preosteoblast Apoptosis

Author:

Bai Shu-Cai1,Xu Qian2ORCID,Li Hui3,Qin Ya-Fei3,Song Li-Cheng3,Wang Chen-Guang3,Cui Wen-Hao45,Zheng Zhi6,Yan De-Wen4,Li Zhi-Jun3,Li Dong3,Wan Xin3,Zhang Hua-Feng3ORCID

Affiliation:

1. Department of Orthopedics, Tianjin Hospital, Hexi District, Tianjin, China

2. Tianjin University of Traditional Chinese Medicine, Nankai District, Tianjin, China

3. The Department of Orthopedics, Tianjin Medical University General Hospital, Heping District, Tianjin, China

4. Department of Endocrinology, The Shenzhen Second People’s Hospital, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, China

5. Department of Pharmacology, Kyoto Prefectural University of Medicine, Japan

6. Department of Internal Medicine 5th Division, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, China

Abstract

Oxidative stress induced by long-term glucocorticoid (GC) use weakens the repair capacity of bone tissue. Nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase (NOX) is a superoxide-generating enzyme that plays an important role in regulating bone metabolism. To clarify the role of nonphagocytic NOX isoforms in osteoblast reactive oxygen species (ROS) generation and apoptosis, dexamethasone was used to establish a high-dose GC environment in vitro. A dose-dependent increase in intracellular ROS generation was demonstrated, which was accompanied by increased osteoblastic MC3T3-E1 cell apoptosis. Addition of the ROS inhibitor NAC (N-acetyl-L-cysteine) or NOX inhibitor DPI (diphenyleneiodonium) reversed this effect, indicating that NOX-derived ROS can induce osteoblast apoptosis under high-dose dexamethasone stimulation. NOX1, NOX2, and NOX4 are NOX homologs recently identified in bone tissue. To clarify the NOX isoforms that play a role in osteoblast ROS generation, Nox1, Nox2, and Nox4 mRNA expression and NOX2 and NOX4 protein expression were analyzed. Nox1 and Nox4 mRNA expression was elevated in a dose-dependent manner after culture in 100 nM, 250 nM, 500 nM, or 1000 nM dexamethasone, and the increased expression of NOX1 mRNA was more significant compared with NOX4 mRNA. Small interfering RNAs (siRNAs) were used to confirm the role of NOX1 and NOX4 in ROS generation. To clarify the signaling pathway in ROS-induced osteoblast apoptosis, mitogen-activated protein kinase (MAPK) signaling molecules were analyzed. Phosphorylated ASK1 and p38 levels were significantly higher in the 1000 nM dexamethasone group, which NAC or DPI markedly attenuated. However, the total mRNA and protein levels of ASK1 and p38 between the dexamethasone group and control were not significantly different. This is related to ROS regulating the posttranslational modification of ASK1 and p38 in MC3T3-E1 cell apoptosis. Altogether, NOX1- and NOX4-derived ROS plays a pivotal role in high-dose dexamethasone-induced preosteoblast apoptosis by increasing phosphorylated ASK1 and p38 and may be an important mechanism in steroid-induced avascular necrosis of the femoral head (SANFH).

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3