Assessing the Impact of Common Cause Failures on Site Risk within Level 1 Multi-Unit PSA

Author:

Coleman James F.1ORCID,Boafo Emmanuel K.12ORCID,Yamoah S.13ORCID,Ameyaw F.13ORCID

Affiliation:

1. School of Nuclear and Allied Sciences, University of Ghana, Legon, P.O. Box AE1, Kwabenya, Ghana

2. National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Ghana

3. Nuclear Power Ghana, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Ghana

Abstract

Common cause failures (CCFs) may lead to the simultaneous unavailability or failure of numerous components in the nuclear power plant because of the existence of a shared cause when an initiating event disrupts the normal functioning of nuclear power plants. The presence of common cause failures (intra-unit and inter-unit) can be recognized in a multi-unit probabilistic safety assessment (MUPSA) as a crucial dependency factor that can influence accident scenarios and the core damage frequency (CDF), as CCF may affect the availability and proper operation of mitigating systems. Since such failures are likely to significantly undermine the benefits of the concept of redundancy in nuclear power plant systems, it is necessary to identify the CCFs that contribute to the core damage in a multi-unit site and analyse their overall quantitative magnitude and qualitative proportions. In this study, a twin-unit generic pressurized water reactor (PWR) nuclear plant is modeled using the AIMS-PSA software. For the loss-of-offsite-power (LOOP) and station blackout (SBO) events, the site CDF was calculated, and the cut-sets produced by this quantification were examined for the modeled CCF basic events in the fault trees. The quantitative and qualitative contributions of the CCFs to the frequency of site core damage were examined. CCFs in the modeled fault trees contributed to 4.58% to the site CDF of the combined LOOP followed by SBO event. In the LOOP event alone that leads to core damage, the CCF contributed 4.58% to the site CDF while CCFs contributed 17.19% to the site CDF in the SBO event alone that leads to core damage. With CCF events considered in the modeling process, the site CDF estimated with CCF events increased by 7.53% in the combined LOOP followed by SBO event. In the LOOP event alone that leads to core damage, inclusion of CCF events in the modeling increased the site CDF by 7.42%. A 15.66% increase in site CDF was recorded in the SBO event alone that leads to core damage as compared to modeling without CCF events. The results show how crucial the common cause failure contribution is to site CDF. The safety of the nuclear plant at a site is impacted by an increase in site CDF when common cause failures are considered. The various CCF fundamental event compositions and their percentage contributions were explicitly examined by the minimal cut-sets which leads to core damage in the units. In conclusion, this study’s findings can help us better understand how CCFs increase multi-unit site risk and can also act as a starting point for future studies on the qualitative and quantitative categorizations of CCF effects within MUPSA.

Funder

International Atomic Energy Agency

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3