Candidate Oligo Therapeutic Target, miR-330-3p, Induces Tamoxifen Resistance in Estrogen Receptor-Positive Breast Cancer Cells via HDAC4

Author:

Zhang Meng1ORCID,Wang Mei2,Jiang Zhiming3,Fu Ziyi4,Ma Jingjing1ORCID,Gao Sheng5ORCID

Affiliation:

1. Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China

2. Department of Pathology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, China

3. Department of Ultrasound Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China

4. Department of Breast Disease Research Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China

5. Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China

Abstract

Tamoxifen is a drug used for treating breast cancer (BC), especially for individuals diagnosed with estrogen receptor-positive (ER+) BC. Its prolonged use could reduce the risk of recurrence and significantly lengthen the survival rate of BC patients. However, an increasing number of patients developed resistance to tamoxifen treatment, which reduced therapeutic efficiency and caused substandard prognosis. Therefore, the exploration of the molecular processes involved in tamoxifen resistance (TR) is urgently required. This investigation aimed to elucidate the relationship of microRNA-330 (miR-330-3p) with the TR of BC. There is little information on miR-330-3p′s link with drug-resistant BC, although it is well known to regulate cell proliferation and apoptosis. Primarily, miR-330-3p expression in parental BC (MCF7/T47D), TR (MCF7-TR), and T47D/TR cell lines was detected by qRT-PCR. Then, the impact of miR-330-3p on the TR of BC cells was assessed by a cell proliferation assay. Lastly, dual-luciferase reporter, qRT-PCR, and western blot assessments were carried out to identify histone deacetylase 4 (HDAC4) as the potential miR-330-3p target gene. The data indicated that miRNA-330 was overexpressed in TR ER+ BC cells and its overexpression could induce TR. Furthermore, miRNA-330 could also reduce the expression of HDAC4, which is closely linked to TR, and overexpression of HDAC4 could reverse miRNA-330-induced drug resistance. In summary, miR-330-3p could induce TR of ER+ BC cells by downregulating HDAC4 expression, which might be a novel marker of TR and a possible treatment target against BC patients who are tamoxifen-resistant.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Oncology,Surgery,Internal Medicine

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3