Green Synthesize and Characterization of Copper Nanoparticles Using Iranian Propolis Extracts

Author:

Hajizadeh Yasamin Seyyed1,Harzandi Naser1,Babapour Ebrahim1,Yazdanian Mohsen2ORCID,Ranjbar Reza23ORCID

Affiliation:

1. Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran

2. Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran

3. Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

The propolis produced by bees is used by them to protect their hives. The cavity inside the hive’s walls is filled in during cold days to reduce entry points and mummify any intruders to ensure their survival. A current focus in nanotechnology and nanoscience is the green biosynthesis of nanoparticles (NPs) using biomaterials. Research on green methods for making metal oxide NPs is gaining momentum to safeguard the environment from the potential dangers associated with toxic chemicals. This study aimed to synthesize copper NPs (CuNPs) via propolis extraction, a novel application of nanoscience. The study was conducted under a range of pH, time conditions, and concentration ratios, and its properties were characterized by UV-Vis absorption spectra, XRD, and FTIR. An FTIR analysis revealed that compounds found in propolis extract could have an effect on the surface modification of the synthesized NPs. The propolis (Khalkhal) extract spectrum exhibited a sharp peak at 3422 cm−1, caused by free hydroxyl groups and their intra/intermolecular hydrogen bonds. There were sharp peaks at 2925, 1637, and 1515 to 1076 cm−1 associated with the C = O and C = C aromatic stretching frequencies. According to UV-Vis spectrophotometry investigation, CuO NPs exhibit a characteristic peak at 385 nm, showing significant surface plasmon resonance (SPR) with propolis (Khalkhal) extract. Furthermore, specific wavelengths of CuO NPs demonstrate peaks at 243, 292, and 350 nm for propolis (Gilan) extract. The green synthesis of CuNPs from Gilan and Khalkhal propolis can be an appropriate candidate for clinical applications such as drug delivery systems, drug formulation, and biomedical applications.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3