The Association between the rs312457 Genotype of the SLC16a13 Gene and Diabetes Mellitus in a Chinese Population

Author:

Zheng Hui1,Pu Suying2,Zhang Yu1,Fan Yujuan1,Yang Jialin1ORCID

Affiliation:

1. Department of Endocrinology and Metabolism, Minhang Hospital, Fudan University, 170 Xin-Song Road, Shanghai 201199, China

2. Department of Neurology, Shanghai Xuhui District Dahua Hospital, 909 LaoHuMin Road, Shanghai 200237, China

Abstract

Objective. SLC16a genes encode H + -coupled monocarboxylate transporters (MCTs). MCTs are involved in maintaining interstitial fluids’ pH and regulating insulin’s binding affinity to its receptor, which is a potential mechanism for the onset of diabetes. In this research, we make explorations of the association between the rs312457 genotype of the SLC16a13 gene and diabetes in the Chinese population. Methods. It included 384 type 2 diabetes patients and 1,468 healthy control subjects in total. We measured the anthropometric parameters, glycaemic index, homeostasis model assessment-B cell (HOMA-%B), lipid profile, and homeostasis model assessment-insulin resistance (HOMA-IR). The associations between the rs312457 genotype and type 2 diabetes were analyzed. Results. The rs312457 genotype was markedly in relation to type 2 diabetes ( P = 0.002 ). The frequency of the rs312457 risk allele (G) was 4.8%, higher than that of the wild-type allele (A) in patients of type 2 diabetes, indicating that allele (G)’s presence seemed to make the risk of type 2 diabetes go up. Compared to the GA and AA genotypes, the GG genotype of rs312457 significantly increased the risk of contracting diabetes mellitus ( P 0.001 ). Moreover, the rs312457 genotype was associated with HOMA-%B. Subjects harbored the GG genotype of rs312457, whose HOMA-%B level went down in comparison with that in subjects harboring the AA genotype ( P = 0.023 ). Conclusion. Our results revealed that the rs312457 genotype of the SLC16a13 gene was correlated with the development of diabetes mellitus in the Chinese population.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3