Climate Change Affects Choice and Management of Training Systems in the Grapevine

Author:

Del Zozzo Filippo1ORCID,Poni Stefano1ORCID

Affiliation:

1. Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, Piacenza 29122, Italy

Abstract

Although vertical shoot positioned (VSP) training systems, either cane- or spur-pruned, are adopted in the great majority of the vineyards worldwide, the lianas nature of the grapevine and the presence of long and flexible canes confer high plasticity and render structural and pruning changes quite easy. The focus of this review is if, in light of the most consistent features triggered by global warming (e.g., longer growing season, earlier phenology, faster ripening, higher incidence of overheating stress and sunburn, higher frequency of extreme weather events), the type and management of training systems should also be reconsidered. We surveyed the main methods to assess training system efficiency and the current attempts and outlook toward exploiting the training system as an adaptation tool to climate change. For the latter, we considered 12 main trellis types and scored them based on climate-related features and general traits such as vigor, yield control, susceptibility to fungal diseases, and suitability according to wine types (still or sparkling). The resulting balance of positive and negative recommendations leads to a re-evaluation of either old, nonmechanizable trellis types (e.g., Raggi-Bellussi and pergola types), divided canopy systems (e.g., GDC and Scott Henry) or, among the single canopy types, of the single high wire (SHW) trellis. However, historical systems traditionally used by best regions and producers (e.g., goblet and VSP either cane- or spur-pruned) overall show less adherence to the chosen evaluation criteria. To direct future evolution of training systems, regardless of the broadly shared need for suitability to partial or full mechanization, the scenario looks different depending on cool and temperate (warm) areas. The former experiences an outburst of interest as warming is broadening growing areas and affordable genotypes. Under such circumstances, training systems should help accelerate or favor the ripening process through vigor control and lower yield, better cluster exposure, and nonlimiting leaf area-to-fruit ratio. Whereas, in warm areas that are now becoming sub-tropical areas in the worst cases, the SHW gains credit as compared to goblet and traditional VSP. The latter requires an increasing number of canopy manipulations and a rethinking of some planting choices to accommodate the needs of slower and more delayed ripening, more cluster shading, and higher cordons, the latter reducing the probability of incurring significant frost damage.

Publisher

Hindawi Limited

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3