An Empirical Likelihood Ratio-Based Omnibus Test for Normality with an Adjustment for Symmetric Alternatives

Author:

Marange Chioneso Show1ORCID,Qin Yongsong2ORCID

Affiliation:

1. Department of Statistics, Faculty of Science and Agriculture, Fort Hare University, East London Campus, East London 5201, South Africa

2. Department of Statistics, Faculty of Science and Agriculture, Fort Hare University, Alice Campus, Alice 5700, South Africa

Abstract

An omnibus test for normality with an adjustment for symmetric alternatives is developed using the empirical likelihood ratio technique. We first transform the raw data via a jackknife transformation technique by deleting one observation at a time. The probability integral transformation was then applied on the transformed data, and under the null hypothesis, the transformed data have a limiting uniform distribution, reducing testing for normality to testing for uniformity. Employing the empirical likelihood technique, we show that the test statistic has a chi-square limiting distribution. We also demonstrated that, under the established symmetric settings, the CUSUM-type and Shiryaev–Roberts test statistics gave comparable properties and power. The proposed test has good control of type I error. Monte Carlo simulations revealed that the proposed test outperformed studied classical existing tests under symmetric short-tailed alternatives. Findings from a real data study further revealed the robustness and applicability of the proposed test in practice.

Funder

Department of Higher Education and Training (DHET) of South Africa

Publisher

Hindawi Limited

Subject

Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3