In Vitro Cytotoxicity of Reproductive Stage Withania somnifera Leaf and Stem on HepG2 Cell Line

Author:

Lingfa Lali1ORCID,Tirumala Aravinda2ORCID,Ankanagari Srinivas1ORCID

Affiliation:

1. Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, India

2. Department of Botany, Nagarjuna Government College, Mahatma Gandhi University, Hyderabad, India

Abstract

Background. The ayurvedic plant Withania somnifera, a member of the Solanaceae family, has been used as a remedy for diverse health problems, including cancer. Objectives. The objective of this investigation was to conduct a comparative analysis of the in vitro cytotoxic properties of methanolic extracts derived from the leaf, stem, and root of W. somnifera on HepG2 and L929 cell lines. Methods. Methanolic extracts were obtained using the Soxhlet extraction method. To assess the in vitro anticancer action on the HepG2 and L929 cell lines, an MTT assay was performed. Changes in cell morphology were observed using an inverted microscope. Results. The MTT assay results indicated that the leaf, stem, and root methanolic extracts of W. somnifera showed significantly higher in vitro cytotoxicity in HepG2 cells, with IC50 values of 43.06 ± 0.615, 45.60 ± 0.3, and 314.4 ± 0.795 μg/mL than in L929 cell lines with 78.77 ± 0.795, 90.55 ± 0.800, and 361.70 ± 0.795 μg/mL, respectively. The leaf methanolic extract was the most effective, followed by the stem methanolic extract in the HepG2 cell line. Conclusion. The results of our study have confirmed that the methanolic extracts of both the leaf and stem of W. somnifera exhibit significant in vitro cytotoxicity in HepG2 cell lines, while displaying no significant cytotoxicity in the L929 cell line. Furthermore, the data obtained from the MTT assay indicate that the leaf methanolic extract possesses a more potent cytotoxic activity than the stem methanolic extract with respect to the HepG2 cell line. Further studies on the identification and isolation of bioactive metabolites are required to explore the mechanisms underlying their in vitro cytotoxicity.

Funder

Ministry of Tribal Affairs–Government of India

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3