Carbon Material Hybrid Construction on an Aptasensor for Monitoring Surgical Tumors

Author:

Ma Renyuan1,Gopinath Subash C. B.234ORCID,Lakshmipriya Thangavel3,Chen Yeng5

Affiliation:

1. Department of General Surgery, Yulin No. 2 Hospital, Yulin 719000, China

2. Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia

3. Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Perlis, Malaysia

4. Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling, Bedong, 08100 Kedah, Malaysia

5. Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

Carcinoembryonic antigen (CEA) is a glycoprotein, one of the common tumor biomarkers, found at low levels in body fluids. Generally, overexpression of CEA is found in various cancers, including ovarian, breast, lung, colorectal, gastric, and pancreatic cancers. Since CEA is an important tumor biomarker, the quantification of CEA is helpful for diagnosing cancer, monitoring tumor progression, and the follow-up treatment. This research develops a highly sensitive sandwich aptasensor for CEA identification on an interdigitated electrode sensor. Carbon-based material was used to attach a higher anti-CEA capture aptamer onto the sensor surface through a chemical linker, and then, CEA was quantified by the aptamer. Furthermore, CEA-spiked serum was tested by using the immobilized aptamer, which was found to not affect the target validation. The limit of detection for CEA in PBS and serum is calculated from a linear regression graph to be 0.5 ng/mL with R2 values of 0.9593 and 0.9657, respectively, over a linear range from 0.5 to 500 ng/mL. This CEA quantification by the aptasensor can help diagnose various surgical tumors and monitor their progression.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3