Experimental Investigation of Different Extraction Methods for Producing Biofuel from Jatropha Seeds and Castor Seeds

Author:

Khalaf Mohammed1ORCID,Abdel-Fadeel Waleed1ORCID,Hashish H. M. Abu2ORCID,Wapet Daniel Eutyche Mbadjoun3ORCID,Mahmoud Mohamed Metwally1ORCID,Elhady Salama Abd1ORCID,Esmail Mohamed F. C.1ORCID

Affiliation:

1. Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt

2. Mechanical Engineering Department, National Research Centre, Giza 12622, Egypt

3. National Advanced School of Engineering, University of Yaounde I, Yaounde 510, Cameroon

Abstract

While energy production is highly dependent on fossil fuels, which consider the main source of global warming, biofuels would play a significant impact in diminishing such warming. In this paper, biooils were extracted from inedible seeds (Jatropha and Castor) using different continuous devices (solvents, screw presses, and hydraulic press-machines), aiming to achieve the highest oil’s yield of improved extraction properties at reduced time and energy. A wide range of engine speeds of 35, 60, 85, 110, and 135 rpm and preheating temperatures of 100, 125, 150, 175, 200, and 250°C were extensively studied to find their impact on the extraction properties. Results proved the ability of the screw press machine to extract the highest biooil yields from Jatropha and castor seeds. The optimum yield of Jatropha and castor were achieved at an extraction temperature range of 150-175°C at a motor speed of 135 rpm and a temperature range of 200-250°C at a motor speed of 35 rpm, respectively. Noteworthy, the yield of extracted castor oil is potentially solidified at low temperatures <100°C, leading oil samples to become like a dough. In contrast, lowering the temperatures of the Jatropha seeds improved the physical and chemical properties of the extracted oil. At a certain temperature (e.g., 100°C), the properties of both extracted and diesel oils are quite similar, which can be used directly in diesel engines.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3