Substance P Administered after Myocardial Infarction Upregulates Microphthalmia-Associated Transcription Factor, GATA4, and the Expansion of c-Kit+ Cells

Author:

Jeong Yun-Mi12ORCID,Cheng Xian Wu3,Kim Weon1ORCID

Affiliation:

1. Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea

2. Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak Street, Si-heung City, Republic of Korea

3. The Department of Cardiology, Yanbian University Hospital, Yanji, China

Abstract

Microphthalmia-associated transcription factor (MITF), a basic helix-loop-helix leucine zipper transcription factor, can govern gene expression by binding to E box elements in the promoter region of its target gene. Although high levels of MITF have been observed in cardiomyocytes and the heart, the role of MITF after myocardial infarction (MI) remains unclear. We investigated the association between substance P (SP)/neurokinin-1 receptor (NK1R) signaling and MITF expression after MI. Male Sprague-Dawley rats (8 weeks) were randomly divided in two groups: ischemia/reperfusion injury (I/R) and SP injection (5 nmol/kg, SP+I/R). At the end of 7 days, the left ventricle (LV; LV7daysI/R, LV7daysSP+I/R) and infarct-related areas (IA; IA7daysI/R, IA7daysSP+I/R) from the hearts were collected. Immunofluorescence staining demonstrated that the LV7daysSP+I/R had a larger population of c-Kit+ GATA4high cells, which markedly upregulated MITF, c-Kit, and GATA4. c-Kit+ cells in the explant-derived cells (EDCs) derived from IA7daysSP+I/R migrated more widely than EDCs IA7daysI/R. Immunofluorescence staining, western blot analysis, and qRT-PCR assay showed that SP-treated c-Kit+ cells exhibited a high expression of c-Kit, GATA4, and MITF. FTY720 (a MITF inhibitor), RP67580 (NK1R inhibitor), or both inhibited the migration and proliferation of c-Kit+ cells increased by SP and blocked the upregulation of c-Kit, GATA4, and MITF. Overall, we suggest that MITF might be a potential regulator in SP-mediated c-Kit+ cell expansion post-MI via c-Kit and GATA4.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3