Attenuated Structural Transformation of Indaconitine during Sand Frying Process and Anti-Arrhythmic Effects of Its Transformed Products

Author:

Wang Yan1ORCID,Tao Pei1ORCID,Wang Yu-Jie2ORCID

Affiliation:

1. School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

2. School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

Abstract

The transformation pathways of diterpenoid alkaloids have been clarified clearly in the boiling and steaming process, but remain to be determined in the sand frying process. The aims of the study were to investigate the transformation pathways of indaconitine in the sand frying process, as well as examine the cardiotoxicity and anti-arrhythmic activity of indaconitine and its transformed products. The transformed product was separated by column chromatography, and the structure was identified by 1H NMR, 13C NMR, and HR-ESI-MS. The cardiotoxicity of indaconitine and its transformed products was clarified by observing the electrocardiogram (ECG) changes at the same dose. Furthermore, the anti-arrhythmic activity of the transformed products was investigated using an aconitine-induced rat arrhythmia model. Consequently, Δ15(16)-16-demethoxyindaconitine, a new diterpenoid alkaloid, was isolated from processed indaconitine. Intravenous injection of 0.06 mg/kg indaconitine induced arrhythmias in SD rats, while Δ15(16)-16-demethoxyindaconitine did not exhibit arrhythmias at the same dose. In the anti-arrhythmic assay, mithaconitine, obtained in the previous research, together with Δ15(16)-16-demethoxyindaconitine, could dose-dependently delay the onset time of ventricular premature beat (VPB) and reduce the incidence of ventricular tachycardia (VT), combined with the increasing arrhythmia inhibition rate, exhibiting strong anti-arrhythmic activities. These results indicated that two or more pathways exist in the sand frying process, and the transformed products exhibited lower cardiotoxicity and strong anti-arrhythmic activities, which had the possibility of being developed into anti-arrhythmic drugs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3