A 20-Year Review of Biomechanical Experimental Studies on Spine Implants Used for Percutaneous Surgical Repair of Vertebral Compression Fractures

Author:

Gajavelli Sairam1ORCID,Gee Aaron1,Bagheri Z. Shaghayegh23,Schemitsch Emil H.14,Bailey Christopher S.14,Rasoulinejad Parham14,Zdero Radovan1

Affiliation:

1. Orthopaedic Biomechanics Laboratory, Victoria Hospital, London, ON, Canada

2. Department of Mechanical Engineering, George Mason University, Fairfax, VA, USA

3. Kite Research Institute, Toronto Rehab Institute, University Health Network, Toronto, ON, Canada

4. Department of Surgery (Division of Orthopaedic Surgery), Western University, London, ON, Canada

Abstract

A vertebral compression fracture (VCF) is an injury to a vertebra of the spine affecting the cortical walls and/or middle cancellous section. The most common risk factor for a VCF is osteoporosis, thus predisposing the elderly and postmenopausal women to this injury. Clinical consequences include loss of vertebral height, kyphotic deformity, altered stance, back pain, reduced mobility, reduced abdominal space, and reduced thoracic space, as well as early mortality. To restore vertebral mechanical stability, overall spine function, and patient quality of life, the original percutaneous surgical intervention has been vertebroplasty, whereby bone cement is injected into the affected vertebra. Because vertebroplasty cannot fully restore vertebral height, newer surgical techniques have been developed, such as kyphoplasty, stents, jacks, coils, and cubes. But, relatively few studies have experimentally assessed the biomechanical performance of these newer procedures. This article reviews over 20 years of scientific literature that has experimentally evaluated the biomechanics of percutaneous VCF repair methods. Specifically, this article describes the basic operating principles of the repair methods, the study protocols used to experimentally assess their biomechanical performance, and the actual biomechanical data measured, as well as giving a number of recommendations for future research directions.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3