RAMS Analysis of Train Air Braking System Based on GO-Bayes Method and Big Data Platform

Author:

Cai Guoqiang12ORCID,Wang Yaofei13,Song Qiong12,Yang Chen4

Affiliation:

1. State Key Lab of Rail Traffic Control & Safety, Beijing Jiaotong University, Beijing 100044, China

2. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China

3. School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

4. Institute of Computing Technologies, China Academy of Railway Sciences, Beijing 100081, China

Abstract

The RAMS (reliability, availability, maintainability, and security) of the air braking system is an important indicator to measure the safety performance of the system; it can reduce the life cycle cost (LCC) of the rail transit system. Existing safety analysis methods are limited to the level of relatively simple factual descriptions and statistical induction, failing to provide a comprehensive safety evaluation on the basis of system structure and accumulated data. In this paper, a new method of safety analysis is described for the failure mode of the air braking system, GO-Bayes. This method combines the structural modeling of the GO method with the probabilistic reasoning of Bayes methods, introduces the probability into the analysis process of GO, performs reliability analysis of the air braking system, and builds a big data platform for the air braking system to guide the system maintenance strategy. An automatic train air braking system is taken as an example to verify the usefulness and accuracy of the proposed method. Using ExtendSim software shows the feasibility of the method and its advantages in comparison with fault tree analysis.

Funder

China High Technologies Research Program

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3