Prediction of Changes in Tumor Regression during Radiotherapy for Nasopharyngeal Carcinoma by Using the Computed Tomography-Based Radiomics

Author:

Yang Yu1ORCID,Wu Jiayang1ORCID,Mai Wenfeng1ORCID,Li Hengguo1ORCID

Affiliation:

1. Medical Imaging Center, The First Affliated Hospital of Jinan University, Guangzhou 510630, China

Abstract

This work aimed to explore the application value of computed tomography (CT)-based radiomics in predicting changes in tumor regression during radiotherapy for nasopharyngeal carcinoma. In this work, 144 patients with nasopharyngeal carcinoma who underwent concurrent chemoradiotherapy (CCRT) in our hospital from January 2015 to December 2021 were selected. The patients were divided into a radiosensitive group (79 cases) and an insensitive group (65 cases) according to the tumor volume shrinkage during radiotherapy. The 3D Slicer 4.10.2 software was used to delineate the tumor region of interest (ROI), and a total of 1223 radiomics features were extracted using the radiomics module under the software. After between-group and within-group consistency tests, one-way ANOVA, and LASSO dimensionality reduction, three omics features were finally selected for the establishment of predictive models. At the same time, the age, gender, tumor T stage and N stage, hemoglobin, and albumin of the patients were collected to establish a clinical prediction model. The results showed that compared with logistic regression, decision tree, random forest, and AdaBoost models, the SVM model based on CT radiomics features had the best performance in predicting tumor regression changes during tumor radiotherapy (training group area under the receiver operating characteristic curve (AUC): 0.840 (95% confidence interval (CI): 0.764–0.916); validation group: AUC: 0.810 (95% CI: 0.676–0.944)). Compared with the supported vector machine (SVM) prediction model based on clinical features, the SVM model based on radiomics features had better performance in predicting the change of retraction during tumor radiotherapy (training group: omics feature SVM model AUC: 0.84, clinical feature SVM model: 0.78; validation group: omics feature SVM model AUC: 0.8, clinical feature SVM model: 0.58, P  = 0.044). Based on the radiomics characteristics and clinical characteristics of patients, a nomo prediction map was established, and the calibration curve shows good consistency, which can be visualized to assist clinical judgment. In this work, the prediction model composed of CT-based radiomic features combined with clinical features can accurately predict withdrawal changes during tumor radiotherapy, ensuring the accuracy of treatment planning, and minimizing the number of CT scans during radiotherapy.

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3