ADAM8 Activates NLRP3 Inflammasome to Promote Cerebral Ischemia-Reperfusion Injury

Author:

Lu Hongwei1ORCID,Meng Yaqin1,Han Xinrui12ORCID,Zhang Wei1

Affiliation:

1. Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China

2. College of Health Sciences, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu, China

Abstract

Stroke is the leading cause of death and disability in humans. Strokes are classified as either ischemic or hemorrhagic. Ischemic stroke accounts for 70–80% of the cases. Inflammation is a key factor in ischemic brain injury. Studies have shown that inflammatory response induced by NLRP3 inflammasome is one of the root causes of brain damage in mice with cerebral ischemia. However, its specific mechanism in cerebral ischemia is still unclear. ADAM8 (a disintegrin and metalloproteases 8) is a transmembrane protein with different functions. It plays an important role in tumors and neuroinflammation-related diseases. However, the role and molecular mechanism of ADAM8 in cerebral ischemia injury are still unclear. This study aims to evaluate the role of ADAM8 in cerebral ischemic injury and explore its signal transduction mechanism. This experiment shows that ADAM8 can significantly cause neurological deficits in MCAO mice and can substantially cause ipsilateral cerebral edema and cerebral infarction in MCAO mice. In addition, ADAM8 can significantly induce cortical cell apoptosis in MCAO mice, leading to the loss of neurons and the expression of proinflammatory factors COX2, iNOS, TNFα, and IL-6. Importantly, we confirmed that ADAM8 mediates the inflammatory response by promoting the activation of NLRP3 inflammasome, microglia, and astrocytes. These results indicate that ADAM8 may be a candidate drug target for the prevention and treatment of the cerebral ischemic injury.

Funder

Graduate Student Innovation Program of Jiangsu Province

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3