Free Vibration Analysis of Functionally Graded Spherical Torus Structure with Uniform Variable Thickness along Axial Direction

Author:

Gao Cong1ORCID,Miao Xuhong12ORCID,Lu Lin1ORCID,Huo Ruidong1,Hu Qiaolin3ORCID,Shan Yanhe1ORCID

Affiliation:

1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

2. Naval Research Academy, Beijing 100161, China

3. Jinan Vocational College, Jinan 250014, China

Abstract

Based on the Ritz method, this paper focused on the free vibration of functionally graded (FG) spherical torus with uniform variable thickness along axial direction under different boundary conditions. The first-order shear deformation theory (FSDT) is employed to formulate the analytical model. The method involves partitioning of the spherical torus structure into proper shell segments in order to satisfy the computing requirement of high-order vibration responses according to the domain decomposition method. The two adjacent segments are connected by using the penalty method, where penalty parameters are defined by the artificial springs; the continuity condition and different boundary conditions can be obtained by assigning the appropriate values of springs. The displacement functions’ components are double mixed series, in which Fourier series and unified Jacobi polynomials, respectively, represent displacement function along circumferential direction and axial direction. Then the Ritz method is used to obtain final solutions. The numerical results obtained by the proposed method show great agreement with previously published literatures and those from the finite element program ABAQUS. The effects of boundary conditions and geometric parameters on the vibration responses of the structure are also presented. The most novelty of this paper is to generalize the selection of admissible displacement functions by using Jacobi polynomial.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3