Thiostrepton-Nanomedicine, a TLR9 Inhibitor, Attenuates Sepsis-Induced Inflammation in Mice

Author:

Esparza K.1,Oliveira S. D.23ORCID,Castellon M.24,Minshall R. D.25ORCID,Onyuksel H.1ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, USA

2. Department of Anesthesiology, University of Illinois at Chicago, Chicago, USA

3. Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, USA

4. Cardiovascular Research Core, University of Illinois at Chicago, Chicago, USA

5. Department of Pharmacology, University of Illinois at Chicago, Chicago, USA

Abstract

Sepsis is a life-threatening clinical condition caused by infection and transposition of pathogens and pathogen-associated molecular patterns (PAMPs) into the host bloodstream. During sepsis, activation of toll-like receptors (TLRs) on immune cells triggers the release of pro-inflammatory cytokines and overstimulates the production of vasodilatory mediators such as nitric oxide (NO). These vascular changes lead to widespread inflammation, tissue damage, multiple organ failure, and often death. New therapeutic options are urgently needed. To this end, thiostrepton (TST) has emerged as a candidate for sepsis treatment due to its action as an antibiotic and anti-inflammatory molecule (TLR7-9 inhibitor). Reports in the literature suggest that TLR9 inhibition substantially suppresses the excessive host inflammatory response and attenuates sepsis-induced mortality in the cecal ligation and puncture (CLP) murine model of sepsis. However, to the best of our knowledge, TST has never been directly tested as a therapeutic option for the management of sepsis, possibly due to its low water solubility and drug delivery issues. These facts prompted us to test the central hypothesis that TST encapsulated in phospholipid sterically stabilized micelles (TST-SSM) could be developed into a novel treatment for sepsis. Thus, using our published method of encapsulating the hydrophobic antibiotic TST-SSM, we evaluated the in vivo efficacy of TST-SSM nanomedicine in the murine model of polymicrobial sepsis. We found that TST-SSM increased the median survival of CLP-induced septic mice from 31 to 44 hr by reducing the bacterial burden in the blood and peritoneal lavage. Moreover, plasma levels of pro-inflammatory cytokines (interleukin 6 and tumor necrosis factor-alpha) and NO derivatives were also reduced, whereas renal and hepatic function biomarkers creatinine and aspartate transferase were significantly improved. In conclusion, we identified that TST-SSM nanomedicine has significant potential as a therapeutic agent for sepsis management, primarily due to its anti-inflammatory and antibiotic properties.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3