Preparation of Iron Oxide and Titania-Based Composite, Core-Shell Populated, Nanoparticulates Material by Two-Step LASER Ablation in Aqueous Media as Antimicrobial and Anticancer Agents

Author:

Bahjat Hasan H.1,Ismail Raid A.1,Sulaiman Ghassan M.2ORCID,Mohammed Hamdoon A.34ORCID,Al-Omar Mohsen35,Mohammed Salman A. A.6ORCID,Khan Riaz A.3ORCID

Affiliation:

1. Division of LASER Science and Technology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq

2. Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq

3. Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia

4. Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt

5. Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, JUST, Irbid, Jordan

6. Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia

Abstract

Iron oxide and titania-based composite nanoparticles (NPs) populated with core-shell structures, as part of the mixture of the monometallic NPs, were prepared in water medium by the two-fluence LASER ablation technique by applying 30 and 60 mJ/cm2 LASER energy irradiations. The prepared monometallics, composite, and core-shell NPs structures were confirmed from the XRD, TEM, and EDX analyses, followed by the FE-SEM and UV absorptions. Optically, the NPs exhibited an increase in the energy gap from 3.27 eV to 3.75 eV as LASER fluence increased from 30 mJ/cm2 to 60 mJ/cm2. The average NPs core size distributions for the core-shell material ranged at ∼70 nm with the shell thickness around 20 nm. The biggest NPs were of ∼170 nm size which were sparsely distributed. The magnetization behaviors of the NPs were also investigated using the vibrating sample magnetometer (VSM). The NPs showed antimicrobial activities against the pathogenic species: Escherichia coli and Staphylococcus aureus. The antimicrobial activities of the synthesized NPs, synthesized under the influence of magnetic fields, were found to be more potent than the NPs synthesized without the presence of any magnetic field. The NPs prepared under the influence of the magnetic fields also comparatively exhibited higher levels of cytotoxicity against lung cancer cell lines (A549) than the NPs prepared under no magnetic field’s influence by the similar energy level effects of the LASER fluence. The flow cytometry analyses confirmed the NPs’ cytotoxic impacts against the human lung cancer A549 cell lines through the initiation of apoptosis and promotion of the cell cycle arrest at the G1 phase of cell division. To further confirm the cytotoxic effects and the mechanism of the anticancer activity of the synthesized NPs against the A549 cell lines, several related parameters (cell viability, membrane permeability, nuclear intensity, and cytochrome-C release) were analyzed using the high-content screening (HCS) assay. The study suggested that the prepared NPs have potential as antimicrobial and also as anti-lung-cancer agents as tested in vitro. These NPs can also be part of combined chemotherapy in different oncological interventions, as well as a sonosensitizer in sonomagnetic heating-based therapy, especially for cancers.

Funder

Qassim University

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3