sPmel17 Secreted by Ultraviolet B-Exposed Melanocytes Alters the Intercellular Adhesion of Keratinocytes

Author:

Hu Shuang-Hai1,Jiang Shan1,Miao Fang1,Lei Tie-Chi1ORCID

Affiliation:

1. Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Abstract

Repigmentation of the skin in patients with vitiligo represents an intricate process in which the depigmented epidermis is replenished by functional melanocytes (MCs) that migrate from undamaged hair follicles and/or surrounding areas. We characterized whether MCs release a secreted form of Pmel17 (sPmel17) protein after exposure to UVB, thereby weakening the cell-cell adhesions of keratinocytes (KCs), which provides MCs the opportunity to migrate to areas devoid of MCs. At first, we examined the interactions of sPmel17 and FHL2 (four-and-a-half LIM domain protein 2) in KCs treated with the conditioned media (CM) from MCs exposed to UVB. The results showed that both the protein and mRNA levels of FHL2 were significantly upregulated in KCs treated with sPmel17-enriched CM from UVB-exposed MCs. We also found that there are physical interactions between sPmel17 and FHL2 as analyzed by reciprocal coimmunoprecipitation assays and double immunofluorescence staining. The CM from UVB-exposed MCs signaled KCs to remodel the actin cytoskeleton and reduce E-cadherin expression. However, the CM from UVB-exposed and Pmel17-silenced or from UVB-unexposed MCs failed to do this. To further determine the in situ distributions of sPmel17, FHL2, and E-cadherin, we examined the expression profiles of those proteins in the skin from healthy subjects and from depigmented or repigmented vitiligo using immunofluorescence and immunohistochemical staining. The results showed that the expression of sPmel17 was positively correlated with FHL2 but not to E-cadherin. The colocalization of FHL2 and sPmel17 was also observed in UVB-exposed mouse tail skin. Together, the upregulation of FHL2 in KCs requires stimulation by sPmel17 secreted from MCs and activation of the sPmel17-FHL2-E-cadherin axis offers a potential therapeutic target to expedite the repigmentation process in patients with vitiligo.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3