Development of a Novel Sensor System Based on Magnetic Microspheres to Detect Cardiac Troponin T

Author:

Zhang Junrong1,Liu Hongxiang1,Xu Baofeng2,Huang Sijun1,Liu Rui3,Zhu Jinming3,Guo Yi1ORCID,Xu Li1ORCID

Affiliation:

1. Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China

2. Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China

3. China-Japan Union Hospital of Jilin University, Changchun 130033, China

Abstract

Acute myocardial infarction (AMI) causes irreversible injury to cardiomyocytes in a short time and may result in various complications, severely threatening patient safety. Therefore, it is necessary to predict the possibility of AMI in the prophase. Prognostic detection of biomarkers that specifically reflect myocardial damage in a patient’s blood has become an essential mediating measure to prevent the serious occurrence of AMI. The present study is aimed at exploring a novel sensing system with high specificity and precision based on magnetic microspheres developed to detect cardiac troponin T (cTnT), which is the most specific diagnostic marker for AMI in cardiovascular diseases. Naive human cTnT protein in serum samples and antigens on functional magnetic microspheres will competitively bind with limited specific antibodies. After rapid removal of heterogeneous elements in the sera using a magnetic separator, fluorescein isothiocyanate-labeled immunoglobulin G is added to react with specific antibodies on the magnetic microspheres. Then, a flow cytometer is used to collect signals of different fluorescence intensities. The results show that the method is characterized by economy, high accuracy, and novelty. It can be used for the detection of cTnT in blood at 1.7–106.1 ng/mL, with a detection limit of 0.5 ng/mL. Thus, the proposed sensor improves the accuracy and efficiency of diagnosis before clinical deterioration of AMI.

Funder

Special Project of Biological Medicine of Jilin Province

Publisher

Hindawi Limited

Subject

Polymers and Plastics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3