Low-Dose CT Image Denoising Based on Improved DD-Net and Local Filtered Mechanism

Author:

Liu Hongen1ORCID,Jin Xin1ORCID,Liu Ling1ORCID,Jin Xin12ORCID

Affiliation:

1. School of Software, Yunnan University, Kunming 650091, Yunnan, China

2. Engineering Research Center of Cyberspace, Yunnan University, Kunming 650000, Yunnan, China

Abstract

Low-dose CT (LDCT) images can reduce the radiation damage to the patients; however, the unavoidable information loss will influence the clinical diagnosis under low-dose conditions, such as noise, streak artifacts, and smooth details. LDCT image denoising is a significant topic in medical image processing to overcome the above deficits. This work proposes an improved DD-Net (DenseNet and deconvolution-based network) joint local filtered mechanism, the DD-Net is enhanced by introducing improved residual dense block to strengthen the feature representation ability, and the local filtered mechanism and gradient loss are also employed to effectively restore the subtle structures. First, the LDCT image is inputted into the network to obtain the denoised image. The original loss between the denoised image and normal-dose CT (NDCT) image is calculated, and the difference image between the NDCT image and the denoised image is obtained. Second, a mask image is generated by taking a threshold operation to the difference image, and the filtered LDCT and NDCT images are obtained by conducting an elementwise multiplication operation with LDCT and NDCT images using the mask image. Third, the filtered image is inputted into the network to obtain the filtered denoised image, and the correction loss is calculated. At last, the sum of original loss and correction loss of the improved DD-Net is used to optimize the network. Considering that it is insufficient to generate the edge information using the combination of mean square error (MSE) and multiscale structural similarity (MS-SSIM), we introduce the gradient loss that can calculate the loss of the high-frequency portion. The experimental results show that the proposed method can achieve better performance than conventional schemes and most neural networks. Our source code is made available at https://github.com/LHE-IT/Low-dose-CT-Image-Denoising/tree/main/Local Filtered Mechanism.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3