An FRLQG Controller-Based Small-Signal Stability Enhancement of Hybrid Microgrid Using the BCSSO Algorithm

Author:

Ensermu Ginbar1ORCID,Vijayashanthi M.2ORCID,Suresh Merugu2ORCID,Shaik Abdul Subhani2ORCID,Premalatha B.2ORCID,Devadasu G.2ORCID

Affiliation:

1. Wollega University, Electrical and Computer Engineering Department, Nekemte, Oromia, Ethiopia

2. CMR College of Engineering and Technology, Kandlakoya, Medchal Road, Hyderabad, Telangana, India

Abstract

The development of a network termed microgrid (MG) has been motivated owing to augmentation in renewable energy source (RES) infiltration along with the utilization of enhanced power electronic technologies. Recently, more popularity has been gained by the hybrid MG (HMG). Maintaining the power system’s (PS) small-signal stability (SSS) is highly complicated during the energy enhancement of RES. The enhancement of the SSS has been focused on by numerous existing methodologies; however, the optimal solution was not obtained by those methodologies. A new controller with the assistance of bell-curved squirrel search optimization (BCSSO) is proposed to address the aforementioned issue. Initially, for PSs such as photovoltaic (PV), wind turbines, along with fuel cells, a mathematical model is ascertained. Then, in this, the converter design has been developed. The PV’s maximum power flow is recognized by maximum power point tracking (MPPT) in the bidirectional switched buck-boost converter (BSBBC), which is utilized in this research, and by utilizing the fuzzy ruled linear quadratic Gaussian (FRLQG), the converters are controlled to assure safe operation along with soft dynamics. By employing the BCSSO, the parameters are modified in this controller which in turn ameliorates the SSS. The experiential evaluation of the proposed system’s performance is analogized with the existing methodologies. Consequently, the outcomes confirmed that a better performance was attained by the proposed methodology than the prevailing works.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3