Mapping Landslide Sensitivity Based on Machine Learning: A Case Study in Ankang City, Shaanxi Province, China

Author:

Zhao Baoxin1ORCID,Zhu Jingzhong2ORCID,Hu Youbiao1ORCID,Liu Qimeng1ORCID,Liu Yu3ORCID

Affiliation:

1. School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China

2. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China

3. State Key Lab Mining Response & Disaster Prevention & Control, Anhui University of Science and Technology, Huainan 232001, China

Abstract

The main purpose of this research is to apply the logistic regression (LR) model, the support vector machine (SVM) model based on radial basis function, the random forest (RF) model, and the coupled model of the whale optimization algorithm (WOA) and genetic algorithm (GA) with RF, to make landslide susceptibility mapping for the Ankang City of Shaanxi Province, China. To this end, a landslide inventory map consisting of 4278 identified landslides is randomly divided into training and test landslides in a ratio of 7 : 3. The 15 landslide influencing factors are selected as follows: slope aspect, slope degree, elevation, terrain curvature, plane curvature, profile curvature, surface roughness, distance to faults, distance to roads, landform, lithology, distance to rivers, rainfall, stream power index (SPI), and normalized difference vegetation index (NDVI), and the potential multicollinearity problem among these factors is detected by Pearson correlation coefficient (PCC), variance inflation factor (VIF), and tolerance (TOL). We evaluate the performance of the model separately by statistical training and test dataset metrics, including sensitivity, specificity, accuracy, kappa, mean absolute error (MSE), root mean square error (RMSE), and area under the receiver operating characteristic curve. The training success rates of LR, SVM, RF, WOA-RF, and GA-RF models are 0.7546, 0.8317, 0.8561, 0.8804, and 0.8957; the testing success rates are 0.7551, 0.8375, 0.8395, 0.8348, and 0.85007. The results show that the GA significantly improves the predictive power of the RF model. This study provides a scientific reference for disaster prevention and control in this area and its surrounding areas.

Funder

Anhui University of Science and Technology

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3