Characteristics of Human Endometrium-Derived Mesenchymal Stem Cells and Their Tropism to Endometriosis

Author:

Cheng Yan1ORCID,Li Liru2,Wang Dejun3,Guo Qiuyan1,He Yanan1,Liang Tian1,Sun Liyuan1,Wang Xiaojun4,Cheng Yulei5,Zhang Guangmei1ORCID

Affiliation:

1. Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China

2. Precision Medical Center, The Third Affiliated Hospital of Harbin Medical University, Harbin, China

3. Department of Ultrasound of Obstetrics and Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China

4. The State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China

5. College of Science, Harbin Engineering University, Harbin, China

Abstract

Human endometrial tissue has become an attractive source of mesenchymal stem cells (MSCs) for cell-based therapies because these MSCs can be easily harvested and have tumour tropism as well as reduced immunogenic and inflammatory properties. Our study aimed to obtain and characterise human endometrial mesenchymal stem cells (EMSCs) and assess their endometriosis tropism. EMSCs were successfully isolated from the endometrium of women undergoing laparoscopy for idiopathic infertility. The EMSCs presented a fibroblast-like morphology during culture. Flow cytometry analyses showed that the cells were positive for the specific stem cell markers CD73, CD90, CD105, CD166, and HLA-ABC (major histocompatibility complex class I (MHC I)) but negative for CD14, CD34, CD45, and HLA-DR (MHC II). Reverse transcription polymerase chain reaction results showed that the EMSCs expressed the stem cell marker OCT4. The EMSCs could differentiate into osteocytes, adipocytes, and chondrocytes under certain conditions. The EMSCs had a high tropism to endometriosis without tumourigenicity. This study enhances the possibility of using EMSCs as drug carriers in human cell-based therapies. Meanwhile, future research could also focus on developing targeted therapies for endometriosis.

Funder

State Key Basic Research and Development Project of China

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3