Numerical and Experimental Study of Friction Damping Blade Attachments of Rotating Bladed Disks

Author:

Charleux D.,Gibert C.,Thouverez F.,Dupeux J.

Abstract

In order to mitigate high cycle fatigue risks in bladed disks, the prediction of the vibration levels early in the design process is important. Therefore, the different sources of damping need to be modeled accurately. In this paper the impact of friction in blade attachments on forced response is investigated both numerically and experimentally. An efficient multiharmonic balance method is proposed in order to compute the forced response of bladed disks with contact and friction nonlinearities in blade roots. For experimental validation purposes, a rotating bladed disk was tested in a vacuum chamber, with excitation being provided by piezoelectric actuators. A model of the rig was built and numerical results were obtained with a normal load dependent coefficient of friction and a constant material damping ratio. Nonlinear behavior observed experimentally at resonances was well reproduced and an acceptable correlation was found with experimental resonant frequencies, amplitudes, and amount of damping throughout the spinning speed and excitation level range. The proposed numerical method can therefore serve to enhance the prediction of the alternating stresses in bladed disk assemblies.

Funder

Snecma

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3