Scoping Review of Deep Learning Techniques for Diagnosis, Drug Discovery, and Vaccine Development in Leishmaniasis

Author:

Sadeghi Alireza1ORCID,Sadeghi Mahdieh2ORCID,Fakhar Mahdi3ORCID,Zakariaei Zakaria4ORCID,Sadeghi Mohammadreza5ORCID

Affiliation:

1. Intelligent Mobile Robot Lab (IMRL), Department of Mechatronics Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

2. Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran

3. Toxoplasmosis Research Center, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran

4. Toxicology and Forensic Medicine Division, Mazandaran Registry Center for Opioids Poisoning, Antimicrobial Resistance Research Center, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran

5. Student Research Committee, Sari Branch, Islamic Azad University, Sari, Iran

Abstract

Leishmania, a single-cell parasite prevalent in tropical and subtropical regions worldwide, can cause varying degrees of leishmaniasis, ranging from self-limiting skin lesions to potentially fatal visceral complications. As such, the parasite has been the subject of much interest in the scientific community. In recent years, advances in diagnostic techniques such as flow cytometry, molecular biology, proteomics, and nanodiagnosis have contributed to progress in the diagnosis of this deadly disease. Additionally, the emergence of artificial intelligence (AI), including its subbranches such as machine learning and deep learning, has revolutionized the field of medicine. The high accuracy of AI and its potential to reduce human and laboratory errors make it an especially promising tool in diagnosis and treatment. Despite the promising potential of deep learning in the medical field, there has been no review study on the applications of this technology in the context of leishmaniasis. To address this gap, we provide a scoping review of deep learning methods in the diagnosis of the disease, drug discovery, and vaccine development. In conducting a thorough search of available literature, we analyzed articles in detail that used deep learning methods for various aspects of the disease, including diagnosis, drug discovery, vaccine development, and related proteins. Each study was individually analyzed, and the methodology and results were presented. As the first and only review study on this topic, this paper serves as a quick and comprehensive resource and guide for the future research in this field.

Funder

Mazandaran University of Medical Sciences

Publisher

Hindawi Limited

Subject

General Veterinary,General Immunology and Microbiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3