LncRNA CARMN Affects Hepatocellular Carcinoma Prognosis by Regulating the miR-192-5p/LOXL2 Axis

Author:

Wang Xiaokang123ORCID,Wu Shulong4,Yang Yi5,Zhao Jingjing6

Affiliation:

1. Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China

2. Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China

3. The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China

4. Department of Pharmacy, South China Hospital of Shenzhen University, Shenzhen, China

5. Health Science Center, Shenzhen University, Shenzhen, China

6. Department of Pharmacy, Guangdong Women and Children Hospital, Guangzhou, China

Abstract

Background. Hepatocellular carcinoma (HCC) is aggressive cancer with a poor prognosis. It has been suggested that the aberrant expression of LOXL2 is associated with the development of HCC, but the exact mechanism remains unclear. This research is aimed at examining the expression level and prognostic value of LOXL2 in hepatocellular carcinoma and its relationship with immune infiltration and at predicting its upstream noncoding RNAs (ncRNAs). Method. The transcriptome data of HCC was first downloaded from The Cancer Genome Atlas (TCGA) database to investigate the expression and prognosis of LOXL2. Then, the starBase database was used to find the upstream ncRNAs of LOXL2, and correlation analysis and expression analysis were performed. Finally, the Tumor Immune Estimation Resource (TIMER) was used to explore the association between LOXL2 and immune cell infiltration. Result. CARMN was considered to be the potential upstream lncRNA for the hsa-miR-192-5p/LOXL2 axis in HCC. Furthermore, the level LOXL2 was markedly positively associated with tumor immune cell infiltration and immune checkpoint expression in HCC. Conclusion. Higher expression of LOXL2 mediated by microRNA (miRNA) and long noncoding RNAs (lncRNA) is associated with poor overall survival (OS), immune infiltration, and immune checkpoint expression in HCC.

Funder

Guangdong Science and Technology Department

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3