Development of an On-Column Trace Enrichment Method for the Determination of Sub-μg/L Bisphenol A in Bottled Water by RP-HPLC with Fluorescent Detection

Author:

Honeychurch Kevin C.1ORCID

Affiliation:

1. School of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK

Abstract

A simple extraction-free, on-column trace enrichment liquid chromatographic method for the determination of trace levels of bisphenol A (BPA) in bottled water samples has been developed. It was found possible to determine ng/L (ppt) levels of BPA by the direct introduction of 6 mL of sample water to the HPLC column utilising fluorescence detection (Exλ = 274 nm, Emλ = 314 nm). Following the loading of the sample and the chromatographic focusing of the BPA on the analytical column, a simple switch from the aqueous sample to the isocratic chromatographic elution step of 50% acetonitrile/deionised water was undertaken. Using a BPA concentration of 0.596 μg/L the effect of sample volume was investigated over the range 1.0 to 12 mL. A linear relationship with the sample volume introduced to the HPLC column and the resulting peak height for BPA was found over the entire range investigated R2=0.999. Using a sample volume of 6.0 mL, a well-defined chromatographic peak was recorded for BPA over the concentration range of 0.1 μg/L to 6.25 μg/L R2=0.9998. A limit of detection of 0.058 μg/L for BPA was calculated based on 3 δ. A mean recovery of 100% with an associated %CV of 7.6% (n = 5) was obtained for a bottled spring water sample fortified with 1.25 μg/L BPA. Samples can be processed in under 12 minutes, much faster than that commonly reported for conventional offline extraction and chromatographic-based methods. The results show that the optimised method holds promise for the determination of BPA in such samples.

Funder

University of the West of England

Publisher

Hindawi Limited

Subject

Analytical Chemistry

Reference56 articles.

1. The Molecular Mechanism of Bisphenol A (BPA) as an Endocrine Disruptor by Interacting with Nuclear Receptors: Insights from Molecular Dynamics (MD) Simulations

2. The hazardous threat of Bisphenol A: Toxicity, detection and remediation

3. A review of dietary and non-dietary exposure to bisphenol-A

4. Bisphenol A contamination in processed food samples: an overview

5. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food on a request from the commission related to 2,2-bis(4-hydroxphenyl)propane (bisphenol A) question number EFSA-Q-2005–100, adopted on 29 november 2006;European Food Safety Authority (Efsa);EFSA Journal,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3