Assessment of Nicotine Degradation in Cigarette Smoke under Different Storage Conditions (Light and Duration)

Author:

An Young-Ji1,Kim Yong-Hyun123ORCID

Affiliation:

1. Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea

2. School of Civil, Environmental, Resources and Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea

3. Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea

Abstract

Nicotine, the primary component of cigarette smoke, is not only addictive but also indirectly contributes to lung diseases by increasing heart rate and blood pressure upon inhalation. Therefore, managing nicotine content in cigarette smoke necessitates accurate quantitative analysis. Nicotine from cigarette smoke is collected using a Cambridge filter, subjected to solvent extraction, and analyzed using instrumental techniques. However, since nicotine is susceptible to light-induced oxidation, losses may occur during pretreatment, reducing result reliability. This study assesses nicotine loss under various lighting conditions and storage durations. Nicotine collected in Cambridge filters is exposed to dark, visible radiation, and UV radiation (254 nm) for different time intervals (0–48 h), and the nicotine content is analyzed and compared. In dark conditions, a 1.6% decline in nicotine concentration occurs after 48 h. With visible radiation, a 9% reduction is observed, while under UV exposure, the concentration decreases by 16.9%. The UV radiation-associated decrease in nicotine concentration is −0.335% h−1, exhibiting strong linearity ( R 2 = 0.9465 ). Consequently, significant nicotine loss in Cambridge filter-collected samples is influenced by storage duration and lighting conditions. This study’s findings can enhance the accuracy of nicotine quantification in cigarette smoke, thereby improving the understanding of nicotine’s harmful effects in cigarette smoke.

Funder

Ministry of Food and Drug Safety

Publisher

Hindawi Limited

Subject

Public Health, Environmental and Occupational Health,Building and Construction,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3