Atomic Scale Interactions between RNA and DNA Aptamers with the TNF-α Protein

Author:

Asadzadeh Homayoun1,Moosavi Ali1ORCID,Alexandrakis Georgios2,Mofrad Mohammad R. K.3

Affiliation:

1. Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9567, Tehran 11365-9567, Iran

2. Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA

3. Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA, USA

Abstract

Interest in the design and manufacture of RNA and DNA aptamers as apta-biosensors for the early diagnosis of blood infections and other inflammatory conditions has increased considerably in recent years. The practical utility of these aptamers depends on the detailed knowledge about the putative interactions with their target proteins. Therefore, understanding the aptamer-protein interactions at the atomic scale can offer significant insights into the optimal apta-biosensor design. In this study, we consider one RNA and one DNA aptamer that were previously used as apta-biosensors for detecting the infection biomarker protein TNF-α, as an example of a novel computational workflow for selecting the aptamer candidate with the highest binding strength to a target. We combine information from the binding free energy calculations, molecular docking, and molecular dynamics simulations to investigate the interactions of both aptamers with TNF-α. The results reveal that the RNA aptamer has a more stable structure relative to the DNA aptamer. Interaction of aptamers with TNF-α does not have any negative effect on its structure. The results of molecular docking and molecular dynamics simulations suggest that the RNA aptamer has a stronger interaction with the protein. Also, these findings illustrate that basic residues of TNF-α establish more atomic contacts with the aptamers compared to acidic or pH-neutral ones. Furthermore, binding energy calculations show that the interaction of the RNA aptamer with TNF-α is thermodynamically more favorable. In total, the findings of this study indicate that the RNA aptamer is a more suitable candidate for using as an apta-biosensor of TNF-α and, therefore, of greater potential use for the diagnosis of blood infections. Also, this study provides more information about aptamer-protein interactions and increases our understanding of this phenomenon.

Funder

Sharif University of Technology

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3