The Partial Least Squares Spline Model for Public Health Surveillance Data

Author:

Sadiq Maryam1ORCID,Alnagar Dalia Kamal Fathi23ORCID,Abdulrahman Alanazi Talal4,Alharbi Randa2

Affiliation:

1. Department of Statistics, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan

2. Department of Statistics, University of Tabuk, Saudi Arabia

3. Department of Statistics, Omdurman Islamic University, Sudan

4. Department of Mathematics, College of Science, University of Ha’il, Saudi Arabia

Abstract

Factor discovery of public health surveillance data is a crucial problem and extremely challenging from a scientific viewpoint with enormous applications in research studies. In this study, the main focus is to introduce the improved survival regression technique in the presence of multicollinearity, and hence, the partial least squares spline modeling approach is proposed. The proposed method is compared with the benchmark partial least squares Cox regression model in terms of accuracy based on the Akaike information criterion. Further, the optimal model is practiced on a real data set of infant mortality obtained from the Pakistan Demographic and Health Survey. This model is implemented to assess the significant risk factors of infant mortality. The recommended features contain key information about infant survival and could be useful in public health surveillance-related research.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complex Survival System Modeling for Risk Assessment of Infant Mortality Using a Parametric Approach;Computational and Mathematical Methods in Medicine;2022-04-19

2. Modeling survival response using a parametric approach in the presence of multicollinearity;Communications in Statistics - Simulation and Computation;2022-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3