M1 Microglia Induced Neuronal Injury on Ischemic Stroke via Mitochondrial Crosstalk between Microglia and Neurons

Author:

Liu Wei1ORCID,Qi Zitong1ORCID,Li Wanmeng1ORCID,Liang Jia2ORCID,Zhao Liang1ORCID,Shi Yijie1ORCID

Affiliation:

1. School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China

2. Life Science Institution, Jinzhou Medical University, Jinzhou 121000, China

Abstract

Among the middle-aged and senile populations, ischemic stroke (IS) is a frequently occurring acute condition of the cerebrovascular system. Traditionally, it is recognized that when stroke occurs, microglia are activated into M1 phenotype and release cytotoxic cytokines, reactive oxygen species, proteases, and other factors, thus exacerbating the injury by further destroying or killing nearby neurons. In the latest research, the crucial role of the intercellular mitochondrial crosstalk on the stroke management has been demonstrated. Therefore, we tried to clarify mitochondrial crosstalk between microglia and neurons, and evaluated M1 microglial mitochondria-mediated neurological performance in transient middle cerebral artery occlusion (tMCAO) rats. We found that when microglia was activated into the proinflammatory M1 type after stroke, mitochondrial fission process was accelerated, and damaged mitochondria were released, further transferred to neurons and fused with neuronal mitochondria. As a result, the function of neuronal mitochondria was damaged by decreasing adenosine triphosphate (ATP), mitochondria membrane potential, and increasing excessive reactive oxygen species (ROS), thus inducing mitochondria-mediated neuronal death and finally aggravating ischemia injury. Taken together, it provides a novel neuroglial crosstalk mechanism at the mitochondrial level.

Funder

2021 Youth Science and Technology Talents Support Plan from Boze Project of Jinzhou Medical University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3