Network Pharmacology and Molecular Docking Approach to Reveal the Immunotherapeutic Mechanism of Cuscutae Semen in Treating Thin Endometrium

Author:

Zhang Wenyan1ORCID,Yuan Yuan1,Huang Guangrong1ORCID

Affiliation:

1. Department of Gynaecology, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China

Abstract

Objective. Thin endometrium is considered as a leading cause of infertility, recurrent pregnancy loss, and repeated implantation failure. The seed of Cuscutae Semen (CS) has been used to prevent aging and improve sexual function in Traditional Chinese Medicine. However, the pharmacological mechanism of CS in preventing and treating thin endometrium remains to be elucidated. Methods. Three public databases, TCMSP, GeneCards, and OMIM, were searched to collect the main active compounds and putative molecules of CS, as well as the targets of thin endometrium, respectively. The CS and thin endometrium common targets were subject to protein-protein interaction (PPI) analysis followed by functional enrichment analysis. The best binding mode of CS compounds and common target proteins was evaluated by molecular docking and analysis in the AutoDockTools. Results. In total, 11 main active compounds, 102 drug target proteins, and 70 CS and thin endometrium common targets were identified. There were 68 nodes with 722 edges in the PPI network; HIF1A, MYC, ESR1, and EGFR were the top 4 targets. After functional enrichment analysis, it was revealed that the therapeutic effects of active compounds of CS on thin endometrium were achieved through cellular response to chemical stress, transcription regulator, DNA-binding transcription factor binding, chemical carcinogenesis-receptor activation, lipid, and atherosclerosis. The molecular docking analysis revealed that the 3 active compounds of CS, quercetin, matrine, and isorhamnetin, have good binding ability with their targets, HIF1A, MYC, ESR1, and EGFR. Conclusion. Our study uncovers the main active compounds in CS and their corresponding targets related to thin endometrium which explains the pharmacological mechanism underlying therapeutic effects of CS on thin endometrium.

Funder

Shenzhen Bao'an District Science and Technology Planning Project

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3