Molecular Docking and In Silico Simulation of Trichinella spiralis Membrane-Associated Progesterone Receptor Component 2 (Ts-MAPRC2) and Its Interaction with Human PGRMC1

Author:

Aleem Muhammad Tahir1ORCID,Khan Asad1,Wen Zhaohai1,Yu Zhengqing1,Li Kun12ORCID,Shaukat Aftab3,Chen Cheng1,-Rehman Tauseef-ur4,Lu Mingmin1,Xu Lixin1,Song Xiaokai1,Li Xiangrui1,Yan Ruofeng1ORCID

Affiliation:

1. MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China

2. Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

3. National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China

4. Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Pakistan

Abstract

Background. Trichinellosis is a foodborne zoonotic disease caused by Trichinella spp., including Trichinella spiralis. This parasitic disease ranks as seven of the most infectious in the world. In this context, it is important to develop a vaccine that can combat Trichinellosis, especially for humans and pigs. This would be an important step in preventing transmission. In this study, we focus on homology modelling, binding site prediction, molecular modelling, and simulation techniques used to explore the association between Trichinella spiralis membrane-associated progesterone receptor component 2 (Ts-MAPRC2) and the human PGRMC1 protein. It was found that the progesterone receptor component 2 of T. spiralis has 44.54% sequence identity with human PGRMC1 (PDB ID: 4X8Y). Binding sites predicted for human PGRMC1 are GLU 7, PHE 8, PHE 10, PHE 18, LEU 27, ASP 36, and VAL 104. Molecular docking has six clusters based on Z scores. They range from -1.5 to 1.8. It was found that the progesterone receptor component 2 of T. spiralis has 44.54% sequence identity with human PGRMC1. During simulation, the average RMSD was 2.44 ± 0.20 Å , which indicated the overall stability of the protein. Based on docking studies and computational simulations, we hypothesized that the interaction of the proteins Trichinella spiralis membrane-associated progesterone receptor component 2 and human PGRMC1 formed stable complexes. The discovery of Ts-MAPRC2 may pave the way for the development of drugs and vaccines to treat Trichinellosis.

Funder

Distinguished Scholars of Nanjing Agricultural University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3