Affiliation:
1. College of Science, Gansu Agricultural University, Lanzhou 730070, China
2. College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
3. Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel
Abstract
Potato dry rot, caused by Fusarium species, is a devastating fungal decay that seriously impacts the yield and quality of potato tubers worldwide. Fusarium sulphureum is a major causal agent causing potato tuber dry rot that leads to trichothecene accumulation in Gansu Province of China. Ozone (O3), a strong oxidant, is widely applied to prevent postharvest disease in fruits and vegetables. In this study, F. sulphureum was first treated with 2 mg L-1 ozone for 0, 30 s, 1 min, and 2 min, then inoculated with the potato tubers. The impact of ozone application on dry rot development and diacetoxyscirpenol (DIA) accumulation and the possible mechanisms involved were analyzed. The results showed that ozone treatment significantly inhibited the development of potato tuber dry rot by activating reactive oxygen species (ROS) metabolism and increased the activities of antioxidant enzymes NADPH oxidase (NOX), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) by 24.2%, 13.1%, 45.4%, and 15.8%, respectively, compared with their corresponding control. The activities of key enzymes involved in ascorbate-glutathione cycle (AsA-GSH) of ascorbic peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) also increased by 26.6%, 41.5%, 56%, and 24.1%, respectively, compared with the control group, and their corresponding gene expressions. In addition, ozone treatment markedly suppressed DIA accumulation in potato tubers by downregulating the expression of genes associated with DIA biosynthesis pathway. These results suggest that ozone treatment inhibited the occurrence of potato dry rot and the accumulation of DIA in potato tubers inoculated with F. sulphureum by promoting ROS metabolism and modulating DIA biosynthesis pathway.
Funder
Youth Supervisor Supporting Fund
Subject
General Chemical Engineering,General Chemistry,Food Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献