A Derived QSAR Model for Predicting Some Compounds as Potent Antagonist against Mycobacterium tuberculosis: A Theoretical Approach

Author:

Adeniji Shola Elijah1ORCID,Uba Sani1,Uzairu Adamu1,Arthur David Ebuka1ORCID

Affiliation:

1. Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria

Abstract

Development of more potent antituberculosis agents is as a result of emergence of multidrug resistant strains of M. tuberculosis. Novel compounds are usually synthesized by trial approach with a lot of errors, which is time consuming and expensive. QSAR is a theoretical approach, which has the potential to reduce the aforementioned problem in discovering new potent drugs against M. tuberculosis. This approach was employed to develop multivariate QSAR model to correlate the chemical structures of the 2,4-disubstituted quinoline analogues with their observed activities using a theoretical approach. In order to build the robust QSAR model, Genetic Function Approximation (GFA) was employed as a tool for selecting the best descriptors that could efficiently predict the activities of the inhibitory agents. The developed model was influenced by molecular descriptors: AATS5e, VR1_Dzs, SpMin7_Bhe, TDB9e, and RDF110s. The internal validation test for the derived model was found to have correlation coefficient (R2) of 0.9265, adjusted correlation coefficient (R2 adj) value of 0.9045, and leave-one-out cross-validation coefficient (Q_cv2) value of 0.8512, while the external validation test was found to have (R2 test) of 0.8034 and Y-randomization coefficient (cR_p2) of 0.6633. The proposed QSAR model provides a valuable approach for modification of the lead compound and design and synthesis of more potent antitubercular agents.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3