Fitting of Atomic Force Microscopy Force Curves with a Sparse Representation Model

Author:

Wang Qing1,Hu Nan2,Duan Junbo3ORCID

Affiliation:

1. School of Electronic Engineering, Xidian University, Xi’an 710071, China

2. First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China

3. Key Laboratory of Biomedical Information Engineering of Ministry of Education and Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Atomic force microscopy (AFM) is a high-resolution scanning technology, and the measured data are a set of force curves, which can be fitted with a piecewise curve model and be analyzed further. Most methods usually follow a two-step strategy: first, the discontinuities (or breakpoints) are detected as the boundaries of two consecutive pieces; second, each piece separated by the discontinuities is fitted with a parametric model, such as the well-known worm-like chain (WLC) model. The disadvantage of this method is that the fitting (the second step) accuracy depends largely on the discontinuity detection (the first step) accuracy. In this study, a sparse representation model is proposed to jointly detect discontinuities and fit curves. The proposed model fits the curve with a linear combination of parametric functions, and the estimation of the parameters in the model can be formulated as an optimization problem with 0 -norm constraint. The performance of the proposed model is demonstrated by the fitting of AFM retraction force curves with the WLC model. Results shows that the proposed method can segment the force curve and estimate the parameter jointly with better accuracy, and hence, it is promising for automatic AFM force curve processing.

Funder

Provincial Science Foundation of Shaanxi

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3