Long-Read Sequencing Identified a Large Novel δ/β-Globin Gene Deletion in a Chinese Family

Author:

Zhuang Jianlong1ORCID,Zheng Yu2,Jiang Yuying1,Wang Junyu1,Zeng Shuhong1,Liu Nansong2

Affiliation:

1. Prenatal Diagnosis Center, Quanzhou Women’s and Children’s Hospital, Quanzhou, 362000 Fujian, China

2. Yaneng BIOscience (Shenzhen) Co., Ltd., Shenzhen, 518000 Guangdong, China

Abstract

Objective. Increasingly rare thalassemia has been identified with the advanced use of long-read sequencing based on long-read technology. Here, we aim to present a novel δ/β-globin gene deletion identified by long-read sequencing technology. Methods. Enrolled in this study was a family from the Quanzhou region of Southeast China. Routine blood analysis and hemoglobin (Hb) capillary electrophoresis were used for hematological screening. Genetic testing for common α- and β-thalassemia was carried out using the reverse dot blot hybridization technique. Long-read sequencing was performed to detect rare globin gene variants. Specific gap-polymerase chain reaction (gap-PCR) and/or Sanger sequencing were further used to verify the detected variants. Results. None of the common α- and β-thalassemia mutations or deletions were observed in the family. However, decreased levels of MCV, MCH, and abnormal Hb bands were observed in the family members, who were suspected as rare thalassemia carriers. Further, long-read sequencing demonstrated a large novel 7.414 kb deletion NG_000007.3:g.63511_70924del partially cover HBB and HBD globin genes causing delta-beta fusion gene in the proband. Parental verification indicated that the deletion was inherited from the proband’s father, while none of the globin gene variants were observed in the proband’s mother. In addition, the novel δ/β-globin gene deletion was further verified by gap-PCR and Sanger sequencing. Conclusion. In this study, we first present a large novel δ/β-globin gene deletion in a Chinese family using long-read sequencing, which may cause δβ-thalassemia. This study further enhances that long-read sequencing would be applied as a sharp tool for detecting rare and novel globin gene variants.

Funder

Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defects open project

Publisher

Hindawi Limited

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3