Ginkgetin Alleviates Inflammation, Oxidative Stress, and Apoptosis Induced by Hypoxia/Reoxygenation in H9C2 Cells via Caspase-3 Dependent Pathway

Author:

Liu Xin1,Bian Hong2,Dou Qing-Li1,Huang Xian-Wen1,Tao Wu-Yuan1,Liu Wen-Hua1,Li Na1,Zhang Wen-Wu1ORCID

Affiliation:

1. Department of Emergency Medicine, The Baoan Hospital Affiliated with Southern Medical University, People’s Hospital of Baoan District of Shenzhen, China

2. Department of Cardiothoracic Surgery, Southern University of Science and Technology Hospital, China

Abstract

Ginkgetin, the extract of Ginkgo biloba leaves, has been reported to exert preventive and therapeutic effects on cardiovascular disease. However, little is known about its role in myocardial ischemia-reperfusion injury (MIRI). The present study aimed to unveil the function of ginkgetin in cardiomyocytes subjected to hypoxia/reoxygenation (H/R) injury. Cell Counting Kit-8 (CCK-8) was employed to evaluate the impact of ginkgetin on cell viability in the absence or presence of H/R. Proinflammatory cytokines and malondialdehyde (MDA), reactive oxygen species (SOD), and lactate dehydrogenase (LDH) were determined via corresponding kits. In addition, flow cytometry was performed to detect apoptotic level. Western blot analysis was utilized to estimate caspase-3 and cytochrome C. Ginkgetin had no significant effect on cell viability; however, it could enhance viability of H9C2 cells exposed to H/R. Inflammation and oxidative stress induced by H/R injury were relieved via pretreatment with ginkgetin. Preconditioning of ginkgetin also decreased apoptotic rate and the protein levels of caspase-3, cytochrome C under H/R condition. Furthermore, 2-HBA, an inducer of caspase-3, was used for the activation of caspase-3 signaling pathway. It was found that induction of caspase-3 eliminated the protective effect of ginkgetin on H9C2 cells exposed to H/R. These results indicated that ginkgetin attenuated inflammation, oxidative stress, and apoptosis. These protective roles of ginkgetin may attribute to caspase-3 dependent pathway.

Funder

Medical and health basic research project of Shenzhen City

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3