Cascaded Fractional-Order Controller-Based Load Frequency Regulation for Diverse Multigeneration Sources Incorporated with Nuclear Power Plant

Author:

Ye Yidie1ORCID,Daraz Amil1ORCID,Basit Abdul1ORCID,Khan Irfan Ahmed2ORCID,AlQahtani Salman A.3ORCID

Affiliation:

1. School of Information Science and Engineering, NingboTech University, Ningbo 315100, China

2. Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

3. Computer Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia

Abstract

To sustain a system frequency within acceptable limits, it is widely conceded that retaining a power balance between generation and demand is necessary. In order to regulate the frequency of power systems (PSs) this article proposes a novel cascaded based fractional-order controller termed as fractional-order integer- (FOI-) fractional-order proportional integral with double derivative (FOPIDD2). In addition to redox flow batteries and capacitive energy storage, the recommended control strategy has been validated with gas, thermal reheat, hydro, and nuclear power systems. Additionally, a newly designed algorithm known as squid game optimizer (SGO) optimizes the gains of the new FOI-FOPIDD2 controller. The squid game optimizer technique is inspired by the fundamental principles of a conventional Korean sport. It employs a population of candidate solutions and iteratively adjusts the control parameters to discover the optimal set that reduces frequency abnormalities and improves system stability. A comparison is also made between the controller’s performance and benchmarks, including the jellyfish search algorithm, the firefly algorithm, the grey wolf optimizer, and the particle swarm algorithm. The proposed algorithms reduced peak overshoot as compared to grey wolf optimizer algorithm by 35.34%, 46.78%, and 76.89%; jellyfish search optimization algorithm by 34.76%, 77.22%, and 82.56%; and firefly algorithm by 82.67%, 89.23%, and 29.67% for frequency variations in area 1, area 2 and tie line power, respectively. Furthermore, SGO-FOI-FOPIDD2 controllers under different loading circumstances and conditions were evaluated and endorsed for their ability to withstand uncertainties in power system parameters.

Funder

King Saud University

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3