Identification and Development of Synovial B-Cell-Related Genes Diagnostic Signature for Rheumatoid Arthritis

Author:

Tang Jifeng1ORCID,Xia Jinfang2ORCID,Sheng Huiming1ORCID,Lin Jinpiao1ORCID

Affiliation:

1. Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China

2. Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China

Abstract

Background. The aim of the study was to investigate the landscape of B-cell-related gene expression profiling in rheumatoid arthritis (RA) synovium and explore the biological and clinical significance of these genes in RA. Methods. Expression profiling of synovial biopsies from subjects with 152 RA patients, 22 osteoarthritis (OA) patients, and 28 healthy controls was downloaded from the Gene Expression Omnibus database. Single-sample gene set enrichment analysis (ssGSEA) was performed to evaluate the abundance of infiltrated immune cells, and the results were validated using immunohistochemical staining. GSEA was employed to decipher differences in B-cell-related biological pathways. B-cell-related differential expression genes (BRDEGs) were screened, and BRDEGs-based model was developed by machine learning algorithms and evaluated by an external validation set and clinical RA cohort, then biological functions were further analyzed. Results. High levels of immune cell infiltration and B-cell-related pathway activation were revealed in RA synovium. BRDEGs were screened, and three key molecular markers consisting of FAS, GPR183, and TFRC were identified. The diagnosis model was established, and these gene markers have good discriminative ability for RA. Molecular pathological evaluation confirmed RA patients with high-risk scores presented higher levels of B-cell activation and RA characteristics. In addition, a competitive endogenous RNA network was established to elucidate the molecular mechanisms of the posttranscriptional network. Conclusions. We described the B-cell-related molecular landscape of RA synovium and constructed a molecular diagnostic model in RA. The three genes FAS, GPR183, and TFRC may be potential targets for clinical diagnosis and immunoregulatory therapy of RA.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3