Microscopic Congestion Detection Protocol in VANETs

Author:

Ahmad Mushtaq1ORCID,Chen Qingchun2ORCID,Khan Zahid1

Affiliation:

1. Southwest Jiaotong University, Chengdu, Sichuan 611756, China

2. Guangzhou University, Guangzhou, Guangdong 510006, China

Abstract

Effective transportation status surveillance imposes critical challenges for the Intelligent Transportation System (ITS) design. In this paper, the microscopic congestion detection protocol (MCDP) is proposed to make the vehicle-to-vehicle (V2V) communication capable of monitoring vehicle density and identifying traffic jam. By introducing transportation control domain in the existing network protocol header, each vehicle can count its neighbors and estimate the time spacing among vehicles. MCDP provides an infrastructure-less solution to the estimate of vehicle density, flow, and average velocity in a microscopically manner. Moreover, the safety speed limit is introduced to make each vehicle calculate its time to cover the intervehicle distance, such that every vehicle is able to assess the transportation congestion by comparing with some predefined safety time threshold. Monte Carlo simulations of the MCDP over four typical Chinese highways are presented to compare the MCDP scheme with the existing Green-Shield congestion detection scheme. In addition, real road traces generated by SUMO over NS2 are utilized to show the achieved performance in terms of throughput, end-to-end delay, and packet delivery rate (PDR) in comparison to DSR and AOMDV in IEEE 802.11p and IEEE 802.11ac scenarios. On the basis of all the results, we conclude that MCDP is an inexpensive transport congestion detection technique for Vehicular Ad Hoc Networks (VANETs).

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3