Natural Bioactive Compounds Promote Cell Apoptosis in Gastric Cancer Treatment: Evidence from Network Pharmacological Study and Experimental Analysis

Author:

Wang Yan1ORCID,Wang Haiyang1ORCID,Xu Shun1ORCID

Affiliation:

1. College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, Henan Province, China

Abstract

Background. Gastric cancer (GC) is one of the most lethal cancers. Shenlian capsule (SLC) is a Chinese patent medicine made from 11 herbs containing numerous plant-derived compounds, and the clinical trials of SLCs confirmed that they had effective adjuvant therapy for a variety of cancer such as lung cancer and gastric cancer. Moreover, the HPLC fingerprint of SLCs was established from other research to find potential components. In this study, network pharmacology-based research was used to identify combinations with molecules, targets, and pathways to explore their interaction mechanisms. Methods. The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and the Traditional Chinese Medicine Integrated Database (TCMID) were widely implemented in selecting the active chemical components of SLCs with an oral bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 18%. In addition, the TCMSP and TCMID databases obtained the targets of SLCs, and PharmMapper (PM) was used to predict targets of SLCs. Gastric cancer-related genes were provided by the GeneCards and TTD databases. Subsequently, the drug/target/pathway network was established and visualized using Cytoscape software. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analyses were used to predict the potential genes and pathways of gastric cancer. Molecular docking was performed to study the interaction between ligands and targets; the interaction was visualized using Discovery Studio and PyMOL. Finally, the potential primary mechanism used by SLCs against gastric cancer was verified by cell experiments, including MTT cell apoptosis assay, flow cytometry cell cycle assay, and western blotting with HGC-27 cells (undifferentiated). Results. Of 213 active chemical components from SLCs, 35 primary active chemical components were identified, and 10 potential critical targets were selected from the 185 intersections of the targets of SLCs and GC, such as RAC-alpha serine/threonine kinase 1 (AKT1), cellular tumor antigen p53 (TP53), interleukin-6 (IL6), caspase-3 (CASP3), vascular endothelial growth factor A (VEGFA), and epidermal growth factor receptor (EGFR). GO and KEGG enrichment analysis provided the PI3K/AKT, TNF, and p53 signaling pathways, which may be the primary signaling pathways modulating gastric cancer. Molecular docking verified targets such as AKT1, TP53, EGFR, and CASP3, which exhibited satisfactory binding capacity with active ingredients. Experiments with HCG-27 cells confirmed that SLCs may provide favorable treatment for GC by promoting CASP3 and TP53 expression to induce cell apoptosis and provided the predictions for network pharmacology and molecular docking. MTT and flow cytometry assays verified that SLCs promoted cell apoptosis and inhibited cell proliferation by triggering G0/G1 and S cell cycle arrest. In addition, western blot analysis confirmed that SLCs promoted TP53 and CASP3 overexpression, which led to HGC-27 gastric cell apoptosis. Conclusions. Our results confirmed that SLCs inhibit proliferation of HGC-27 gastric cell by promoting cell apoptosis and, therefore, have potential in the treatment of advanced gastric cancer. P53 signaling pathway was the key pathway. In addition, quercetin, matrine, and ursolic acid might be the main active ingredients.

Funder

Postgraduate Education Reform and Quality Improvement Project of Henan Province

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3