Electrical and Dielectric Properties of Polyaniline and Polyaniline/Montmorillonite Nanocomposite Prepared by Solid Reaction Using Spectroscopy Impedance

Author:

Bekri-Abbes Imene1,Srasra Ezzeddine1

Affiliation:

1. Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, Borj Cedria, BP 95-2050, Hammam-Lif, Tunis, Tunisia

Abstract

The combination of two components with uniform distribution in nanoscale is expected to facilitate wider applications of the material. In this study, polyaniline (PAn) and polyaniline/montmorillonite (Mt) nanocomposite were prepared by solid reaction using persulfate of ammonium as oxidant. The phase composition and morphology of the nanocomposite were characterized by FTIR, UV-visible spectroscopy, X-ray diffractometer, thermal gravimetric analysis, and scanning electron microscopy. The electrical and dielectric properties were determined using spectroscopy impedance. The analysis of UV-visible and FTIR spectroscopy demonstrated that aniline chloride has been polymerized into PAn in its conducting emeraldine form. Thermogravimetric analysis suggested that PAn chains intercalated in the clay host are more thermally stable than those of free PAn prepared by solid-solid reaction. Electrical measurements were carried out using the complex impedance technique in the frequency range of 10−2to 104 Hz at different temperatures. The ac conductivity data of different nanocomposites were analyzed as a function of frequency and temperature. It has been found that the incorporation of inorganic clay phase into polyaniline matrix has an effect on the electrical and dielectric properties of the nanomaterial.

Funder

Ministry of Higher Education, Scientific Research and Information and Communication Technologies of Tunisia

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3