Network-Assisted Prediction of Potential Drugs for Addiction

Author:

Sun Jingchun1,Huang Liang-Chin1,Xu Hua1,Zhao Zhongming234

Affiliation:

1. School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA

2. Department of Biomedical Informatics, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 600, Nashville, TN 37203, USA

3. Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA

4. Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

Abstract

Drug addiction is a chronic and complex brain disease, adding much burden on the community. Though numerous efforts have been made to identify the effective treatment, it is necessary to find more novel therapeutics for this complex disease. As network pharmacology has become a promising approach for drug repurposing, we proposed to apply the approach to drug addiction, which might provide new clues for the development of effective addiction treatment drugs. We first extracted 44 addictive drugs from the NIDA and their targets from DrugBank. Then, we constructed two networks: an addictive drug-target network and an expanded addictive drug-target network by adding other drugs that have at least one common target with these addictive drugs. By performing network analyses, we found that those addictive drugs with similar actions tended to cluster together. Additionally, we predicted 94 nonaddictive drugs with potential pharmacological functions to the addictive drugs. By examining the PubMed data, 51 drugs significantly cooccurred with addictive keywords than expected. Thus, the network analyses provide a list of candidate drugs for further investigation of their potential in addiction treatment or risk.

Funder

Brain and Behavior Research Foundation

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3