Protective Role of AMPK against PINK1B9 Flies’ Neurodegeneration with Improved Mitochondrial Function

Author:

Xiang Guoliang1ORCID,Wen Xueyi23,Wang Wenjing2,Peng Tianchan2,Wang Jiazhen2,Li Qinghua24,Teng Junfang15ORCID,Cui Ying1245ORCID

Affiliation:

1. Department of Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China

2. Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541004, China

3. Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China

4. Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China

5. Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China

Abstract

Adenosine 5′-monophosphate-activated protein kinase (AMPK)’s effect in PTEN-induced kinase 1 (PINK1) mutant Parkinson’s disease (PD) transgenic flies and the related mechanism is seldom studied. The classic MHC-Gal4/UAS PD transgenic flies was utilized to generate the disease characteristics specifically expressed in flies’ muscles, and Western blot (WB) was used to measure the expression of the activated form of AMPK to investigate whether activated AMPK alters in PINK1B9 PD flies. MHC-Gal4 was used to drive AMPK overexpression in PINK1B9 flies to demonstrate the crucial role of AMPK in PD pathogenesis. The abnormal wing posture and climbing ability of PINK1B9 PD transgenic flies were recorded. Mitochondrial morphology via transmission electron microscopy (TEM) and ATP and NADH: ubiquinone oxidoreductase core subunit S3 (NDUFS3) protein levels were tested to evaluate the alteration of the mitochondrial function in PINK1B9 PD flies. Phosphorylated AMPKα dropped significantly in PINK1B9 flies compared to controls, and AMPK overexpression rescued PINKB9 flies’ abnormal wing posture rate. The elevated dopaminergic neuron number in PPL1 via immunofluorescent staining was observed. Mitochondrial dysfunction in PINK1B9 flies has been ameliorated with increased ATP level, restored mitochondrial morphology in muscle, and increased NDUFS3 protein expression. Conclusively, AMPK overexpression could partially rescue the PD flies via improving PINK1B9 flies’ mitochondrial function.

Funder

Henan Youth Science Foundation Project

Publisher

Hindawi Limited

Subject

Psychiatry and Mental health,Neurology (clinical),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3