Curcumin-Activated Mesenchymal Stem Cells Derived from Human Umbilical Cord and Their Effects on MPTP-Mouse Model of Parkinson’s Disease: A New Biological Therapy for Parkinson’s Disease

Author:

Wang Yun-Liang12,Liu Xin-Shan3,Wang Shan-Shan2,Xue Peng1,Zeng Zhi-Lei1,Yang Xiao-Peng1,Zhang Si-Miao1,Zheng Wei1,Hua Linlin1,Li Jin-Feng4ORCID,Wang Hai-Tao5ORCID,Guo Shang6ORCID

Affiliation:

1. Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou 450014, China

2. Department of Neurology, The 960th Hospital, 20 Zhanbei Road, Zibo 255300, China

3. Sanbo Brain Hospital, Capital Medical University, 50 Xiang Shan Yikesong Road, Beijing 100093, China

4. Department of Oncology, Chinese PLA General Hospital, Beijing 100037, China

5. Department of Cardiology, The 970th Hospital, No. 7 Zhichunan Road, Shandong 264002, China

6. Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China

Abstract

Background. The aim of this study was to investigate the effects of human umbilical cord mesenchymal stem cell activated by curcumin (hUC-MSCs-CUR) on Parkinson’s disease (PD). hUC-MSCs can differentiate into many types of adult tissue cells including dopaminergic (DA) neurons. CUR could protect DA neurons from apoptosis induced by 6-hydroxydopamine (6-OHDA). Therefore, we used the hUC-MSCs activated by CUR for the treatment of PD in an animal model. Methods. The hUC-MSCs-CUR was transplanted into the MPTP-induced PD mouse models via the tail vein. We found that hUC-MSCs-CUR significantly improved the motor ability, increased the tyrosine hydroxylase (TH), dopamine (DA), and Bcl-2 levels, and reduced nitric oxide synthase, Bax, and cleaved caspase 3 expression in PD mice. The supernatant of hUC-MSCs-CUR (CM-CUR) was used to stimulate the SH-SY5Y cellular model of PD; cell proliferation, differentiation, TH, and neuronal-specific marker microtubular-associated protein 2 (MAP2) expressions were examined. Results. Our data showed that CM-CUR significantly promoted cell proliferation and gradually increased TH and MAP2 expression in SH-SY5Y PD cells. The beneficial effects could be associated with significant increase of rough endoplasmic reticulum in the hUC-MSCs-CUR, which secretes many cytokines and growth factors beneficial for PD treatment. Conclusions. Transplantation of hUC-MSCs-CUR could show promise for improving the motor recovery of PD.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3