Calculation of Hinge Moments for a Folding Wing Aircraft Based on High-Order Panel Method

Author:

Xu Hao1,Huang Qin2ORCID,Han Jinglong1,Yun Haiwei1

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Research Institute of Unmanned Aircraft, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Calculating hinge moments during the morphing process is a critical aspect in the folding wing design. The deficiencies of the traditional flat-plate aerodynamic model in the calculation are expounded in this work, and a flight simulation platform based on a high-order panel method is established. On the basis of the platform, a typical flight-folding process of the aircraft is simulated, and the results of different aerodynamic models are compared. Results show that airfoil thickness has a great influence on the aerodynamic loading distribution of wing surfaces and thus affects the hinge moments during the folding process. The flat-plate method, which ignores the influence of the airfoil thickness, shows a great simulation error in hinge moment, whereas the high-order panel method can effectively describe the thickness effect and obtain reliable simulation results.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference17 articles.

1. Demonstration of morphing technology through ground and wind tunnel tests;M. H. Love

2. Validation of the lockheed martin morphing concept with wind tunnel testing;T. G. Ivanco

3. Morphing ircraft echnology urvey;A. Rodriguez

4. Aeroelastic studies on a folding wing configuration;D. H. Lee

5. Development of an integrated aeroelastic multi-body morphing simulation tool;G. W. Reich

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3