Updating a Strategy for Histone Deacetylases and Its Inhibitors in the Potential Treatment of Cerebral Ischemic Stroke

Author:

Xu Yuzhen1ORCID,Wang Qian2ORCID,Chen Jianxin3ORCID,Ma Yihong4ORCID,Liu Xueyuan1ORCID

Affiliation:

1. Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China

2. Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China

3. Department of Neurology, Jinan First People’s Hospital, Shandong Traditional Chinese Medicine University, Jinan, Shandong Province, China

4. Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan

Abstract

Background. Cerebral ischemic stroke is one of the severe diseases with a pathological condition that leads to nerve cell dysfunction with seldom available therapy options. Currently, there are few proven effective treatments available for improving cerebral ischemic stroke outcome. However, recently, there is increasing evidence that inhibition of histone deacetylase (HDAC) activity exerts a strong protective effect in in vivo and vitro models of ischemic stroke. Review Summary. HDAC is a posttranslational modification that is negatively regulated by histone acetyltransferase (HATS) and histone deacetylase. Based on function and DNA sequence similarity, histone deacetylases (HDACs) are organized into four different subclasses (I-IV). Modifications of histones play a crucial role in cerebral ischemic affair development after translation by modulating disrupted acetylation homeostasis. HDAC inhibitors (HDACi) mainly exert neuroprotective effects by enhancing histone and nonhistone acetylation levels and enhancing gene expression and protein modification functions. This article reviews HDAC and its inhibitors, hoping to find meaningful therapeutic targets. Conclusions. HDAC may be a new biological target for cerebral ischemic stroke. Future drug development targeting HDAC may make it a potentially effective anticerebral ischemic stroke drug.

Funder

Science and Technology Commission of Shanghai Municipality

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3